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SUMMARY

The Gauss–Newton (GN) method is a well-known iterative technique for solving nonlinear least-squares
problems subject to dynamical system constraints. Such problems arise commonly in optimal state esti-
mation where the systems may be stochastic. Variational data assimilation techniques for state estimation
in weather, ocean and climate systems currently use approximate GN methods. The GN method solves a
sequence of linear least-squares problems subject to linearized system constraints. For very large systems,
low-resolution linear approximations to the model dynamics are used to improve the efficiency of the
algorithm. We propose a new method for deriving low-order system approximations based on model
reduction techniques from control theory. We show how this technique can be combined with the GN
method to retain the response of the dynamical system more accurately and improve the performance of
the approximate GN method. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The Gauss–Newton (GN) method is a well-known iterative technique for solving nonlinear least-
squares problems subject to dynamical constraints [1]. It may be applied to optimal state estimation
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problems, where the dynamical systemmay be stochastic, and is used in variational data assimilation
for environmental systems [2–5]. The GN method is essentially an approximation to the Newton
method in which only the first-order part of the Hessian is retained. We consider a general nonlinear
least-squares problem

min
x

�(x)= f(x)Tf(x) (1)

where f(x) is a nonlinear function of x and we define J(x) to be the Jacobian of f(x). Then the
GN iteration method for solving this problem consists of the following steps:

Solve for �x(k) : (J(x(k))TJ(x(k)))�x(k) =−J(x(k))Tf(x(k)) (2)

Update : x(k+1) =x(k)+�x(k) (3)

for k=0,1 . . . . For very large systems, such as arise in meteorology and oceanography, it is not
generally possible to solve (2) directly. The solution �x(k) is then found by an ‘inner’ minimization
of the linear least-squares function

�̃(�x(k))=‖J(x(k))�x(k)+f(x(k))‖2 (4)

In the case where dynamical system constraints are imposed on the optimization problem, the
objective function f(x) depends on the dynamical equations. In order to apply the GN method,
the Jacobian of the function f(x) is needed and, hence, the Jacobian of the nonlinear system
equations, known as the tangent linear model, is also required. The inner linear minimization
problem (4) is then solved subject to the dynamical constraints imposed by the tangent linear model.
In order to make the GN method more efficient for large systems, a commonly used approach is to
approximate the full tangent linear model by a linearized model at low spatial resolution, while still
calculating f(x) and updating x at the highest spatial resolution. Thus, in (4) the Jacobian J(x(k))

is replaced by an approximate low-resolution operator J̃(x(k)). Whilst this leads to an algorithm
that is practical to compute in real time, the approximate low-resolution model may not correctly
reproduce the input–output response of the full system and the accuracy of the state estimate may
be compromised.

In this work we propose a new method for approximating the inner step of the GN method, based
on the ideas of model reduction. Model reduction has been used in the field of state-space control
theory to approximate very large dynamical systems with low-order models [6]. In the context
of Kalman filtering, such methods have been applied to optimal state estimation under certain
simplifying assumptions [7]. In the context of variational data assimilation low-order models for
optimal state estimation have been obtained using proper orthogonal decomposition [8]. Model
reduction techniques have not, however, been applied in the context of the GN method for state
estimation. In this paper we show how model reduction may be used in the inner step of the GN
algorithm to give an approximate iteration procedure that retains the most important properties of
the dynamical system response. Employing the example of the balanced-truncation technique, we
demonstrate the application of this technique to state estimation and present experiments with a
shallow-water model that show the benefits that may be obtained by using a reduced-order model
instead of a standard low-resolution model within the GN algorithm. We show that the use of
model reduction allows the system to be approximated accurately by models of much smaller
dimension than can be used with low-resolution approximations. In the next section, we describe
the application of approximate GN methods to the variational data assimilation state estimation
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problem and in Section 3 we present the model reduction techniques that we use here. In Section 4
the test model is defined and experimental results are shown. Conclusions are given in Section 5.

2. FOUR-DIMENSIONAL VARIATIONAL DATA ASSIMILATION

The aim of state estimation is to match the output response of a dynamical system model to
observed measurements of the outputs over a specified time window. For a discrete dynamical
system, we let x j ∈Rn be the model state vector, y j ∈Rp j be a vector of p j observations and
h j :Rn →Rp j be a nonlinear function that relates the system states to the observations at time t j .
The state estimation data assimilation problem is defined as follows.

Problem 1
Minimize, with respect to x0, the objective function

J[x0]= 1

2
(x0−xb0)

TB−1
0 (x0−xb0)+

1

2

N∑

j=0
(h j (x j )−y j )

TR−1
j (h j (x j )−y j ) (5)

subject to x j , j =0, . . . ,N , satisfying the discrete dynamical system equations.

The background or prior estimate, xb0, of the initial state, x0, is known. If the initial errors
(x0−xb0) and the observational errors d j =h j (x j )−y j are assumed to be unbiased, Gaussian
random vectors with covariance matrices B0 and R j , respectively, then the optimization delivers
the maximum posterior Bayesian estimate of the initial state [9].

In practice, the constrained minimization problem is solved iteratively by the GN method. At
each step of this method the inner linear least-squares problem (4) must be solved for the increment
�x(k). We write the linearized discrete system equations as

�x j+1=M j�x j , d j =H j�x j (6)

where �x0=B1/2
0 x with random Gaussian noise input x∼N(0,I), and M j and H j are, respec-

tively, the tangent linear system model and the Jacobian of the observation operator obtained by
linearizing around the state x j . The inner minimization problem is then given by the following
problem.

Problem 2
Minimize, with respect to �x(k)

0 , the objective function

J̃
(k)[�x(k)

0 ] = 1

2
(�x(k)

0 −[xb−x0(k)])TB−1
0 (�x(k)

0 −[xb−x0(k)])

+1

2

N∑

j=0
(H j�x

(k)
j −d(k)

j )TR−1
j (H j�x

(k)
j −d(k)

j ) (7)

subject to the states �x(k)
j satisfying the discrete linear system equations (6).

Problem 2 is solved by an inner iteration process, such as the conjugate gradient method. Each
inner iteration requires one forward solution of the tangent linear model equations (6), starting
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from the current best estimate of the initial states, and one backward solution of the corresponding
linear adjoint equations to determine the gradient of the objective function. In order for this process
to be operationally feasible for very large systems such as weather and ocean systems, which
involve as many as 108 state variables, the computational cost is reduced by using low-dimensional
approximations to the linear models.

Low-dimensional system models can be obtained by using low-resolution approximations to
the full dynamical system. Significant features of the system behaviour are often lost, however,
in such approximations. In particular optimal error growth modes may not be captured by these
models. In the next section we propose an alternative method for generating low-order system
approximations using techniques of model reduction.

3. MODEL REDUCTION BY BALANCED TRUNCATION

To find low-order approximations to the linearized system model (6), we project the system
into a low-dimensional subspace. We introduce linear restriction operators UT

j ∈Rr×n that project
the state variables into the subspace Rr , where r �n. We define variables �x̂ j ∈Rr , such that
�x̂ j =UT

j �x j , and define prolongation operators V j ∈Rn×r that project the variables back into the

original space Rn . The restriction and prolongation operators UT
j and V j satisfy UT

jV j =Ir and

V jUT
j is a projection operator. We write the projected linear system as

�x̂ j+1=UT
jM jV j�x̂ j , d̂ j =H jV j�x̂ j (8)

The reduced-dimension inner minimization problem then becomes

Problem 3
Minimize, with respect to �x̂(k)

0 , the objective function

Ĵ
(k)[�x̂(k)

0 ] = 1

2
(�x̂(k)

0 −UT
0 [xb−x0(k)])TB̂−1

0 (�x̂(k)
0 −UT

0 [xb−x0(k)])

+1

2

N∑

j=0
(H jV j�x̂

(k)
j −d(k)

j )TR−1
j (H jV j�x̂

(k)
j −d(k)

j ) (9)

subject to the states �x̂(k)
j satisfying the discrete linear system equations (8).

The prolongation operator V0 is then applied to lift the solution �x̂(k)
0 back into the space Rn .

Here, the matrix B̂0=UT
0B0U0 models the background error statistics in the reduced space.

The projection matrices are chosen to ensure that the low-order linear model (8) accurately
approximates the output response of the linear system (6) to the input data over a full frequency
range. Specifically, the aim of the model reduction is to design a model of order r �n of form (8)
such that the expected value of the distance between the system outputs d j and the reduced-order
model outputs d̂ j , expressed as

lim
j→∞E{‖d̂ j −d j‖22}= lim

j→∞E{[d̂ j −d j ]T[d̂ j −d j ]} (10)

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:1367–1373
DOI: 10.1002/fld



REDUCED-ORDER MODELS IN GAUSS–NEWTON METHODS 1371

is minimized over all random Gaussian white-noise inputs x of normalized unit length such that
E{(1/n)‖x‖22}=1, where E{·} denotes the expected value.

The response of a discrete linear system is represented by its Hankel matrix and a good
approximation to the optimal reduced-order system can be found by matching the Hankel singular
values of the reduced-order model to those of the full linear system model. The projection matrices
U j and V j are therefore selected to ensure that the maximum Hankel singular values of the full
system are retained by the reduced-order model. A global error bound on the expected error between
the frequency responses of the full and reduced systems, based on the neglected Hankel singular
values, then exists [6]. A reduced-order system derived by this method is therefore expected to
capture well the modes of optimal error growth. Efficient and accurate numerical techniques are
readily available for finding the restriction and prolongation operators for systems of moderately
large size based on balanced-truncation methods [10, 11], and for very large systems, Krylov
subspace methods and rational interpolation methods can be implemented [12, 13]. (See [14] for
further details and preliminary results.)

4. NUMERICAL EXPERIMENTS

To illustrate the benefit of using reduced-order models we apply the method of balanced truncation
to a discrete model of the nonlinear 1D shallow-water equations with rotation and compare the
results to those obtained using a low-resolution model of the system. The continuous system is
given by

�u
�t

+(Uc+u)
�u
�x

− f v = −g
�(h+ h̄)

�x
�v

�t
+(Uc+u)

�v

�x
+ f u = 0,

�h
�t

+ �h(Uc+u)

�x
=0

(11)

where u denotes the departure of the velocity in the x-direction from a known constant forcing
the mean flow, Uc, h̄= h̄(x) is the height of the orography, f is the Coriolis parameter and g is
the gravitational force. The model domain is periodic in the x-direction. The system is discretized
as described in [15] using a semi-implicit semi-Lagrangian integration scheme.

The data for the problem are also given in [15]. An initial perturbation �x0 is defined and the
outputs d j satisfying the discrete linear equations (6) are determined. A time-invariant linear model
that approximates the tangent linear model of the system is used in the experiments. The solution
in Rr of the reduced inner minimization problem, Problem 3, is found using (i) a low-resolution
model and (ii) a reduced-order model obtained by balanced truncation. In case (i) the corresponding
solution in Rn is found by interpolation, whilst in case (ii) the solution in Rn is found by applying
the prolongation operator.

The results are compared with the exact solution to the full linear least-squares problem,
Problem 2. In the example where n=1500 and r =750, the errors between the exact solution and
the solutions obtained using the two different low-dimensional models are shown in Figure 1(a).
The least-square norms of the errors in the two cases are, respectively, (i) 0.0396 and (ii) 0.0057. It
is clear that for the same size, the optimal reduced-order models are significantly more accurate than
the low-resolution models. This benefit can be partially explained by examining the eigenstructure
of the reduced-dimensional systems shown in Figure 2. More of the significant eigenvalues of
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Figure 1. Errors in solutions to reduced linear least-squares problem for low-resolution model (dotted) of
order r =750 and optimal reduced-order model (dashed) of order: (a) r =750 and (b) r =250.
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Figure 2. Eigenvalues of: (a) full matrix; (b) low-resolution matrix; and (c) low-order matrix.

the optimal reduced-order model match those of the full system than is the case for the low-
resolution model, showing that the modes of the system are more accurately captured by the
balanced-truncation method than by using low-resolution models.

Solutions to the reduced least-squares problem obtained for smaller values of r demonstrate
that balanced truncation can be applied to find much smaller systems with accuracy equal to
that of the low-resolution model. A comparison of the errors obtained with the low-resolution
model of dimension r =750 and an optimal reduced-order model of dimension r =250 is shown
in Figure 1(b). The least-squares error norm obtained using the optimal reduced-order model is
now 0.0288. This demonstrates that an optimal reduced-order model with one-third the dimension
can achieve the same accuracy as a low-resolution model. This represents a considerable increase
in computational efficiency in practice.

5. CONCLUSIONS

We have described a new approach to finding low-dimensional linear models that can be used to
improve the efficiency of approximate GN methods for solving nonlinear least-squares problem.
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The new approach applies techniques of optimal reduced-order modelling from control theory and
is shown to give better accuracy with significant improvement in performance in solving the inner
linear least-squares problem. The challenge is now to develop these techniques to apply to the
very large problems arising in environmental systems.
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